Gaussian units constitute a metric system of physical units. This system is the most common of the several electromagnetic unit systems based on cgs (centimetre–gram–second) units. It is also called the Gaussian unit system, Gaussian-cgs units, or often just cgs units. The term "cgs units" is ambiguous and therefore to be avoided if possible: cgs contains within it several conflicting sets of electromagnetism units, not just Gaussian units, as described below.
The most common alternative to Gaussian units are SI units. SI units are predominant in most fields, and continue to increase in popularity at the expense of Gaussian units. (Other alternative unit systems also exist, as discussed below.) Conversions between Gaussian units and SI units are not as simple as normal unit conversions. For example, the formulas for physical laws of electromagnetism (such as Maxwell's equations) need to be adjusted depending on what system of units one uses. As another example, quantities that are dimensionless (loosely "unitless") in one system may have dimension in another.
Gaussian units existed before the CGS system. The British Association report of 1873 that proposed the CGS contains gaussian units derived from the foot–grain–second and metre–gram–second as well. There are also references to foot–pound–second gaussian units.
The main alternative to the Gaussian unit system is SI units, historically also called the MKSA system of units for metre–kilogram–second–ampere.
The Gaussian unit system is just one of several electromagnetic unit systems within CGS. Others include "electrostatic units", "electromagnetic units", and Lorentz–Heaviside units.