The Gauss–Newton algorithm is used to solve non-linear least squares problems. It is a modification of Newton's method for finding a minimum of a function. Unlike Newton's method, the Gauss–Newton algorithm can only be used to minimize a sum of squared function values, but it has the advantage that second derivatives, which can be challenging to compute, are not required.
Non-linear least squares problems arise for instance in non-linear regression, where parameters in a model are sought such that the model is in good agreement with available observations.
The method is named after the mathematicians Carl Friedrich Gauss and Isaac Newton.
Given m functions r = (r1, …, rm) (often called residuals) of n variables β = (β1, …, βn), with m ≥ n, the Gauss–Newton algorithm iteratively finds the value of the variables which minimizes the sum of squares
Starting with an initial guess for the minimum, the method proceeds by the iterations
where, if r and β are column vectors, the entries of the Jacobian matrix are