*** Welcome to piglix ***

Gambogic acid

Gambogic acid
Gambogic acid.svg
Names
IUPAC name
(Z)-4-((1S,3aR,5S,11R,14aS)-8-Hydroxy-2,2,11-trimethyl-13-(3-methylbut-2-en-1-yl)-11-(4-methylpent-3-en-1-yl)-4,7-dioxo-2,3a,4,5,7,11-hexahydro-1H-1,5-methanofuro[3,2-g]pyrano[3,2-b]xanthen-3a-yl)-2-methylbut-2-enoic acid
Other names
β-Guttiferin
Identifiers
3D model (Jmol)
ChemSpider
ECHA InfoCard 100.159.336
PubChem CID
Properties
C38H44O8
Molar mass 628.76 g·mol−1
Appearance Amorphous orange solid
Density 1.29 g/cm3
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Gambogic acid is a xanthonoid that is derived from the brownish or orange resin from Garcinia hanburyi. Garcinia hanburyi is a small to medium-sized evergreen tree (up to approximately 15 m in height) with smooth grey bark. It is native to Cambodia, southern Vietnam, and Thailand and has been successfully introduced in Singapore.

Gambogic acid is the principal pigment of gambooge resin which, in addition to early traditional medicinal uses in Southeast Asia, is also a sought after dye due to the bright orange color it imparts to cloth. According to traditional Chinese medical documentation, gamboge was described as poisonous and acidic and possessed the ability to detoxify, kill parasites, and stop bleeding as a hemostatic agent. Gambogic acid has also been used in various food preparations in Asian cultures.

Some pharmacological research on gambogic acid has been conducted in vitro and in laboratory animals, but there are no proven clinical effects in humans.

In studies conducted with mice and transplanted tumors (from human lung carcinoma SPC-A1 cells), tumor growth remained suppressed for up to 21 days during treatment with gambogic acid. The ratio of relative tumor volume (RTV) for the treated group of mice to the control group indicates the gambogic acid was having an impact on tumor size while having no adverse effects on body weight or mortality. Tumor volume was measured twice each week during the study, and the ratio of treated to control group tumor volume ranged from 45.0% to 72.7% for the 8 mg/kg dose and from 55.6% to 78.8% for the 4 mg/kg dose. Tumor growth rate shows a dependence on the dose of gambogic acid, with the 8 mg/kg dose providing improved results at suppressing tumor growth in these trials.

In 2007, a research project focused on the mechanisms involved with gambogic acid's antitumor activity. Results supported the hypothesis that gambogic acid works to suppress nuclear factor-κΒ (NF-κΒ) activation that is induced by various inflammatory agents and carcinogens. Gambogic acid has also been found to bind to transferrin receptor1 (TfR) and rapidly induce cell apoptosis without competing with the transferrin (Tf) binding site. A brief exposure to this compound resulted in a rapid start to apoptosis, including membrane blebbing within 15 minutes.


...
Wikipedia

...