Statistical inference might be thought of as gambling theory applied to the world around us. The myriad applications for logarithmic information measures tell us precisely how to take the best guess in the face of partial information. In that sense, information theory might be considered a formal expression of the theory of gambling. It is no surprise, therefore, that information theory has applications to games of chance.
Kelly betting or proportional betting is an application of information theory to investing and gambling. Its discoverer was John Larry Kelly, Jr.
Part of Kelly's insight was to have the gambler maximize the expectation of the logarithm of his capital, rather than the expected profit from each bet. This is important, since in the latter case, one would be led to gamble all he had when presented with a favorable bet, and if he lost, would have no capital with which to place subsequent bets. Kelly realized that it was the logarithm of the gambler's capital which is additive in sequential bets, and "to which the law of large numbers applies."
A bit is the amount of entropy in a bettable event with two possible outcomes and even odds. Obviously we could double our money if we knew beforehand for certain what the outcome of that event would be. Kelly's insight was that no matter how complicated the betting scenario is, we can use an optimum betting strategy, called the Kelly criterion, to make our money grow exponentially with whatever side information we are able to obtain. The value of this "illicit" side information is measured as mutual information relative to the outcome of the betable event:
where Y is the side information, X is the outcome of the betable event, and I is the state of the bookmaker's knowledge. This is the average Kullback–Leibler divergence, or information gain, of the a posteriori probability distribution of X given the value of Y relative to the a priori distribution, or stated odds, on X. Notice that the expectation is taken over Y rather than X: we need to evaluate how accurate, in the long term, our side information Y is before we start betting real money on X. This is a straightforward application of Bayesian inference. Note that the side information Y might affect not just our knowledge of the event X but also the event itself. For example, Y might be a horse that had too many oats or not enough water. The same mathematics applies in this case, because from the bookmaker's point of view, the occasional race fixing is already taken into account when he makes his odds.