*** Welcome to piglix ***

GW Vir stars


A pulsating white dwarf is a white dwarf star whose luminosity varies due to non-radial gravity wave pulsations within itself. Known types of pulsating white dwarfs include DAV, or ZZ Ceti, stars, with hydrogen-dominated atmospheres and the spectral type DA;DBV, or V777 Her, stars, with helium-dominated atmospheres and the spectral type DB; and GW Vir stars, with atmospheres dominated by helium, carbon, and oxygen, and the spectral type PG 1159. (Some authors also include non-PG 1159 stars in the class of GW Vir stars.) GW Vir stars may be subdivided into DOV and PNNV stars; they are not, strictly speaking, white dwarfs but pre-white dwarfs which have not yet reached the white dwarf region on the Hertzsprung-Russell diagram. A subtype of DQV stars, with carbon-dominated atmospheres, has also been proposed., and in May 2012, the first extremely low mass variable (ELMV) white dwarf was reported.

These variables all exhibit small (1%–30%) variations in light output, arising from a superposition of vibrational modes with periods of hundreds to thousands of seconds. Observation of these variations gives asteroseismological evidence about the interiors of white dwarfs.

Early calculations suggested that white dwarfs should vary with periods around 10 seconds, but searches in the 1960s failed to observe this. The first variable white dwarf found was HL Tau 76; in 1965 and 1966, Arlo U. Landolt observed it to vary with a period of approximately 12.5 minutes. The reason for this period being longer than predicted is that the variability of HL Tau 76, like that of the other pulsating variable white dwarfs known, arises from non-radial gravity wave pulsations. In 1970, another white dwarf, Ross 548, was found to have the same type of variability as HL Tau 76; in 1972, it was given the variable star designation ZZ Ceti. The name ZZ Ceti also refers to this class of pulsating variable white dwarfs, which, as it consists of white dwarfs with hydrogen atmospheres, is also called DAV. These stars have periods between 30 seconds and 25 minutes and are found in a rather narrow range of effective temperatures between about 12,500 and 11,100 K. The measurement of the rate of change of period with time for the gravity wave pulsations in ZZ Ceti stars is a direct measurement of the cooling timescale for a DA white dwarf, which in turn can give an independent measurement of the age of the galactic disk.


...
Wikipedia

...