GPS wildlife tracking is a process whereby biologists, scientific researchers or conservation agencies can remotely observe relatively fine-scale movement or patterns in a free-ranging wild animal using the Global Positioning System and optional environmental sensors or automated data-retrieval technologies such as Argos satellite uplink, mobile data telephony or GPRS and a range of analytical software tools.
A GPS-enabled device will normally record and store location data at a pre-determined interval or on interrupt by an environmental sensor. These data may be stored pending recovery of the device or relayed to a central data store or internet-connected computer using an embedded cellular (GPRS), radio, or satellite modem. The animal's location can then be plotted against a map or chart in near real-time or, when analysing the track later, using a GIS package or custom software.
While GPS tracking devices may also be attached to domestic animals such as pets, pedigree and working dogs, and similar systems are used in fleet management of vehicles, wildlife tracking can place additional constraints on size and weight and may not allow for post-deployment recharging or replacement of batteries or correction of attachment.
As well as allowing in-depth study of animal behaviour and migration, the high-resolution tracks available from a GPS-enabled system can potentially allow for tighter control of animal-borne communicable diseases such as the H5N1 strain of avian influenza.