Fuzzy logic is a form of many-valued logic in which the truth values of variables may be any real number between 0 and 1. By contrast, in Boolean logic, the truth values of variables may only be the integer values 0 or 1. Fuzzy logic has been employed to handle the concept of partial truth, where the truth value may range between completely true and completely false. Furthermore, when linguistic variables are used, these degrees may be managed by specific (membership) functions.
The term fuzzy logic was introduced with the 1965 proposal of fuzzy set theory by Lotfi Zadeh. Fuzzy logic had however been studied since the 1920s, as infinite-valued logic—notably by Łukasiewicz and Tarski.
Fuzzy logic has been applied to many fields, from control theory to artificial intelligence.
Classical logic only permits conclusions which are either true or false. However, there are also propositions with variable answers, such as one might find when asking a group of people to identify a color. In such instances, the truth appears as the result of reasoning from inexact or partial knowledge in which the sampled answers are mapped on a spectrum.
Humans and animals often operate using fuzzy evaluations in many everyday situations. In the case where someone is tossing an object into a container from a distance, the person does not compute exact values for the object weight, density, distance, direction, container height and width, and air resistance to determine the force and angle to toss the object. Instead the person instinctively applies quick "fuzzy" estimates, based upon previous experience, to determine what output values of force, direction and vertical angle to use to make the toss.
Both degrees of truth and probabilities range between 0 and 1 and hence may seem similar at first, but fuzzy logic uses degrees of truth as a mathematical model of vagueness, while probability is a mathematical model of ignorance.