*** Welcome to piglix ***

Functionally graded material


In materials science Functionally Graded Material (FGM) may be characterized by the variation in composition and structure gradually over volume, resulting in corresponding changes in the properties of the material. The materials can be designed for specific function and applications. Various approaches based on the bulk (particulate processing), preform processing, layer processing and melt processing are used to fabricate the functionally graded materials.

The concept of FGM was first considered in Japan in 1984 during a space plane project. Where a combination of materials used would serve the purpose of a thermal barrier capable of withstanding a surface temperature of 2000 K and a temperature gradient of 1000 k across a 10 mm section. In recent years this concept has become more popular in Europe, particularly in Germany. A transregional collaborative research center (SFB Transregio) is funded since 2006 in order to exploit the potential of grading monomaterials, such as steel, aluminium and polypropylen, by using thermomechanically coupled manufacturing processes.

The basic structural units of FGMs are elements or material ingredients represented by maxel. The term maxel was introduced in 2005 by Rajeev Dwivedi and Radovan Kovacevic at Research Center for Advanced Manufacturing (RCAM). The attributes of maxel include the location and volume fraction of individual material components.

A maxel is also used in the context of the additive manufacturing processes (such as stereolithography, selective laser sintering, fused deposition modeling, etc.) to describe a physical voxel (a portmanteau of the words 'volume' and 'element'), which defines the build resolution of either a rapid prototyping or rapid manufacturing process, or the resolution of a design produced by such fabrication means.

There are many areas of application for FGM. The concept is to make a composite material by varying the microstructure from one material to another material with a specific gradient. This enables the material to have the best of both materials. If it is for thermal, or corrosive resistance or malleability and toughness both strengths of the material may be used to avoid corrosion, fatigue, fracture and stress corrosion cracking.


...
Wikipedia

...