*** Welcome to piglix ***

Functional neuroimaging


Functional neuroimaging is the use of neuroimaging technology to measure an aspect of brain function, often with a view to understanding the relationship between activity in certain brain areas and specific mental functions. It is primarily used as a research tool in cognitive neuroscience, cognitive psychology, neuropsychology, and social neuroscience.

Common methods of functional neuroimaging include

PET, fMRI and NIRSI can measure localized changes in cerebral blood flow related to neural activity. These changes are referred to as activations. Regions of the brain which are activated when a subject performs a particular task may play a role in the neural computations which contribute to the behaviour. For instance, widespread activation of the occipital lobe is typically seen in tasks which involve visual stimulation (compared with tasks that do not). This part of the brain receives signals from the retina and is believed to play a role in visual perception.

Other methods of neuroimaging involve recording of electrical currents or magnetic fields, for example EEG and MEG. Different methods have different advantages for research; for instance, MEG measures brain activity with high temporal resolution (down to the millisecond level), but is limited in its ability to localize that activity. fMRI does a much better job of localizing brain activity for spatial resolution, but with a much lower time resolution.

The measure used in a particular study is generally related to the particular question being addressed. Measurement limitations vary amongst the techniques. For instance, MEG and EEG record the magnetic or electrical fluctuations that occur when a population of neurons is active. These methods are excellent for measuring the time-course of neural events (on the order of milliseconds,) but generally bad at measuring where those events happen. PET and fMRI measure changes in the composition of blood near a neural event. Because measurable blood changes are slow (on the order of seconds), these methods are much worse at measuring the time-course of neural events, but are generally better at measuring the location.


...
Wikipedia

...