The freshman's dream is a name sometimes given to the erroneous equation (x + y)n = xn + yn, where n is a real number (usually a positive integer greater than 1). Beginning students commonly make this error in computing the power of a sum of real numbers. When n = 2, it is easy to see why this is incorrect: (x + y)2 can be correctly computed as x2 + 2xy + y2 using distributivity (or commonly known as the FOIL method). For larger positive integer values of n, the correct result is given by the binomial theorem.
The name "freshman's dream" also sometimes refers to the theorem that says that for a prime number p, if x and y are members of a commutative ring of characteristic p, then (x + y)p = xp + yp. In this case, the "mistake" actually gives the correct result, due to p dividing all the binomial coefficients save the first and the last.
When p is a prime number and x and y are members of a commutative ring of characteristic p, then (x + y)p = xp + yp. This can be seen by examining the prime factors of the binomial coefficients: the nth binomial coefficient is
The numerator is p factorial, which is divisible by p. However, when 0 < n < p, neither n! nor (p − n)! is divisible by p since all the terms are less than p and p is prime. Since a binomial coefficient is always an integer, the nth binomial coefficient is divisible by p and hence equal to 0 in the ring. We are left with the zeroth and pth coefficients, which both equal 1, yielding the desired equation.