*** Welcome to piglix ***

Fracture healing


Bone healing, or fracture healing, is a proliferative physiological process in which the body facilitates the repair of a bone fracture.

Generally bone fracture treatment consists of a doctor reducing (pushing) displaced bones back into place via relocation with or without anaesthetic, stabilizing their position to aid union, and then waiting for the bone's natural healing process to occur.

Adequate nutrient intake has been found to significantly affect the integrity of the fracture repair. Age, Bone type, drug therapy and pre existing bone pathology are factors which affect healing. The role of bone healing is to produce new bone without a scar as seen in other tissues which would be a structural weakness or deformity.

The process of the entire regeneration of the bone can depend on the angle of dislocation or fracture. While the bone formation usually spans the entire duration of the healing process, in some instances, bone marrow within the fracture has healed two or fewer weeks before the final remodeling phase.

While immobilization and surgery may facilitate healing, a fracture ultimately heals through physiological processes. The healing process is mainly determined by the periosteum (the connective tissue membrane covering the bone). The periosteum is one source of precursor cells which develop into chondroblasts and osteoblasts that are essential to the healing of bone. The bone marrow (when present), endosteum, small blood vessels, and fibroblasts are other sources of precursor cells.

There are three major phases of fracture healing, two of which can be further sub-divided to make a total of five phases:

After fracture, the first change seen by light and electron microscopy is the presence of blood cells within the tissues adjacent to the injury site. Soon after fracture, the blood vessels constrict, stopping any further bleeding. Within a few hours after fracture, the extravascular blood cells form a blood clot, known as a hematoma. These cells release cytokines and increase blood capillary permeability. All of the cells within the blood clot degenerate and die. Some of the cells outside of the blood clot, but adjacent to the injury site, also degenerate and die. Within this same area, the fibroblasts survive and replicate. They form a loose aggregate of cells, interspersed with small blood vessels, known as granulation tissue. This tissue reduces strain across the fracture site. Osteoclasts move in to reabsorb dead bone ends and other necrotic tissue are removed.


...
Wikipedia

...