In topology and related fields of mathematics, a sequential space is a topological space that satisfies a very weak axiom of countability. Sequential spaces are the most general class of spaces for which sequences suffice to determine the topology.
Every sequential space has countable tightness.
Let X be a topological space.
The complement of a sequentially open set is a sequentially closed set, and vice versa. Every open subset of X is sequentially open and every closed set is sequentially closed. The converses are not generally true.
A sequential space is a space X satisfying one of the following equivalent conditions:
Given a subset of a space , the sequential closure is the set