In mathematics, Fourier–Bessel series is a particular kind of generalized Fourier series (an infinite series expansion on a finite interval) based on Bessel functions.
Fourier–Bessel series are used in the solution to partial differential equations, particularly in cylindrical coordinate systems.
The Fourier–Bessel series of a function f(x) with a domain of [0,b]
is the notation of that function as a linear combination of many orthogonal versions of the same Bessel function of the first kind Jα, where the argument to each version n is differently scaled, according to
where uα,n is a root, numbered n associated with the Bessel function Jα and cn are the assigned coefficients:
The Fourier–Bessel series may be thought of as a Fourier expansion in the ρ coordinate of cylindrical coordinates. Just as the Fourier series is defined for a finite interval and has a counterpart, the continuous Fourier transform over an infinite interval, so the Fourier–Bessel series has a counterpart over an infinite interval, namely the Hankel transform.
As said, differently scaled Bessel Functions are orthogonal with respect to the inner product
according to
(where: is the Kronecker delta). The coefficients can be obtained from projecting the function f(x) onto the respective Bessel functions: