*** Welcome to piglix ***

Four laws of thermodynamics


The four laws of thermodynamics define fundamental physical quantities (temperature, energy, and entropy) that characterize thermodynamic systems at thermal equilibrium. The laws describe how these quantities behave under various circumstances, and forbid certain phenomena (such as perpetual motion).

The four laws of thermodynamics are:

There have been suggestions of additional laws, but none of them achieves the generality of the four accepted laws, and they are not mentioned in standard textbooks.

The laws of thermodynamics are important fundamental laws in physics and they are applicable in other natural sciences.

The zeroth law of thermodynamics may be stated in the following form:

If two systems are both in thermal equilibrium with a third system then they are in thermal equilibrium with each other.

The law is intended to allow the existence of an empirical parameter, the temperature, as a property of a system such that systems in thermal equilibrium with each other have the same temperature. The law as stated here is compatible with the use of a particular physical body, for example a mass of gas, to match temperatures of other bodies, but does not justify regarding temperature as a quantity that can be measured on a scale of real numbers.

Though this version of the law is one of the more commonly stated, it is only one of a diversity of statements that are labeled as "the zeroth law" by competent writers. Some statements go further so as to supply the important physical fact that temperature is one-dimensional, that one can conceptually arrange bodies in real number sequence from colder to hotter. Perhaps there exists no unique "best possible statement" of the "zeroth law", because there is in the literature a range of formulations of the principles of thermodynamics, each of which call for their respectively appropriate versions of the law.

Although these concepts of temperature and of thermal equilibrium are fundamental to thermodynamics and were clearly stated in the nineteenth century, the desire to explicitly number the above law was not widely felt until Fowler and Guggenheim did so in the 1930s, long after the first, second, and third law were already widely understood and recognized. Hence it was numbered the zeroth law. The importance of the law as a foundation to the earlier laws is that it allows the definition of temperature in a non-circular way without reference to entropy, its conjugate variable. Such a temperature definition is said to be 'empirical'.


...
Wikipedia

...