*** Welcome to piglix ***

Four-vertex theorem


The classical four-vertex theorem states that the curvature function of a simple, closed, smooth plane curve has at least four local extrema (specifically, at least two local maxima and at least two local minima). The name of the theorem derives from the convention of calling an extreme point of the curvature function a vertex. This theorem has many generalizations, including a version for space curves where a vertex is defined as a point of vanishing torsion.

An ellipse has exactly four vertices: two local maxima of curvature where it is crossed by the major axis of the ellipse, and two local minima of curvature where it is crossed by the minor axis. In a circle, every point is both a local maximum and a local minimum of curvature, so there are infinitely many vertices.

The four-vertex theorem was first proved for convex curves (i.e. curves with strictly positive curvature) in 1909 by Syamadas Mukhopadhyaya. His proof utilizes the fact that a point on the curve is an extremum of the curvature function if and only if the osculating circle at that point has 4th-order contact with the curve (in general the osculating circle has only 3rd-order contact with the curve). The four-vertex theorem was proved in general by Adolf Kneser in 1912 using a projective argument.

For many years the proof of the four-vertex theorem remained difficult, but a simple and conceptual proof was given by Osserman (1985), based on the idea of the minimum enclosing circle. This is a circle that contains the given curve and has the smallest possible radius. If the curve includes an arc of the circle, it has infinitely many vertices. Otherwise, the curve and circle must be tangent at at least two points. At each tangency, the curvature of the curve is greater than that of the circle (else the curve would continue from the tangency outside the circle rather than inside). However, between each pair of tangencies, the curvature must decrease to less than that of the circle, for instance at a point obtained by translating the circle until it no longer contains any part of the curve between the two points of tangency and considering the last point of contact between the translated circle and the curve. Therefore, there is a local minimum of curvature between each pair of tangencies, giving two of the four vertices. There must be a local maximum of curvature between each pair of local minima, giving the other two vertices.


...
Wikipedia

...