*** Welcome to piglix ***

Foundations of probability


The word probability has been used in a variety of ways since it was first applied to the mathematical study of games of chance. Does probability measure the real, physical tendency of something to occur or is it a measure of how strongly one believes it will occur, or does it draw on both these elements? In answering such questions, mathematicians interpret the probability values of probability theory.

There are two broad categories of probability interpretations which can be called "physical" and "evidential" probabilities. Physical probabilities, which are also called objective or frequency probabilities, are associated with random physical systems such as roulette wheels, rolling dice and radioactive atoms. In such systems, a given type of event (such as a die yielding a six) tends to occur at a persistent rate, or "relative frequency", in a long run of trials. Physical probabilities either explain, or are invoked to explain, these stable frequencies. The two main kinds of theory of physical probability are frequentist accounts (such as those of Venn, Reichenbach and von Mises) and propensity accounts (such as those of Popper, Miller, Giere and Fetzer).

Evidential probability, also called Bayesian probability, can be assigned to any statement whatsoever, even when no random process is involved, as a way to represent its subjective plausibility, or the degree to which the statement is supported by the available evidence. On most accounts, evidential probabilities are considered to be degrees of belief, defined in terms of dispositions to gamble at certain odds. The four main evidential interpretations are the classical (e.g. Laplace's) interpretation, the subjective interpretation (de Finetti and Savage), the epistemic or inductive interpretation (Ramsey,Cox) and the logical interpretation (Keynes and Carnap). There are also evidential interpretations of probability covering groups, which are often labelled as 'intersubjective' (proposed by Gillies and Rowbottom).


...
Wikipedia

...