*** Welcome to piglix ***

Forest Rohwer


Forest Rohwer (born 1969) is an American microbial ecologist and Professor of Biology at San Diego State University. His particular interests include coral reef microbial ecology and viruses as both evolutionary agents and opportunistic pathogens in various environments.

Rohwer holds bachelor's degrees with emphases in biology, chemistry, and history from the College of Idaho and earned his doctorate in molecular biology from the San Diego State University/University of California, San Diego Joint Doctoral Program.

In 2002, as a research scientist San Diego State University, Rohwer performed the first shotgun metagenome (Breitbart et al. 2002). This method of randomly sequencing DNA from the environment transformed the study of viruses and microbes in the environment and associated with macroorganisms.


The first shotgun metagenome, also called virome, showed that there were thousands of viral species per liter of seawater (Breitbart et al. 2002; Angly et al. 2006). Working with Anca Segall, Mya Brietbart, Rob Edwards, and the SDSU Biomath Group, Rohwer performed the first virome studies of corals, soils, sediments and humans (Breitbart et al. 2003, 2005, 2008). Based on this work, he proposed that viruses, and particularly bacteriophage, are the most diverse biological entities on Earth.


Virome studies showed that most viral diversity was extreme and almost completely unknown. Rob Edwards and Rohwer proposed that a genome-based taxonomy was need to link the metagenomic data to the existing, morphology-based taxonomy. The controversial Phage Proteomic Tree was the resulting system and was featured in Life in Our Phage World (2015).


Working with Nancy Knowlton at the Scripps Institution of Oceanography, Rohwer showed that reef-building corals harbored 100 to 1000s of unique bacterial species (Rohwer et al. 2002). They proposed that these bacteria, viruses and other microbes were important for coral health and formed an ecological unit called the holobiont. Further, they hypothesized that changing membership of the holobiont was the primary mechanism of adaption to changing environmental conditions.


...
Wikipedia

...