Force platforms or force plates are measuring instruments that measure the ground reaction forces generated by a body standing on or moving across them, to quantify balance, gait and other parameters of biomechanics. Most common areas of application are medicine and sports.
The simplest force platform is a plate with a single pedestal, instrumented as a load cell. Better designs have a pair of rectangular plates, although triangular can also work, one over another with load cells or triaxial force transducers between them at the corners.
The simplest force plates measure only the vertical component of the force in the geometric center of the platform. More advanced models measure the three-dimensional components of the single equivalent force applied to the surface and its point of application, usually called the centre of pressure (CoP), as well as the vertical moment of force. Cylindrical force plates have also been constructed for studying arboreal locomotion, including brachiation.
Force platforms may be classified as single-pedestal or multi-pedestal and by the transducer (force and moment transducer) type: strain gauge, piezoelectric sensors, capacitance gauge, piezoresistive, etc., each with its advantages and drawbacks. Single pedestal models, sometimes called load cells, are suitable for forces that are applied over a small area. For studies of movements, such as gait analysis, force platforms with at least three pedestals and usually four are used to permit forces that migrate across the plate. For example, during walking ground reaction forces start at the heel and finish near the big toe.