Terms | |
---|---|
Foodborne illness | |
Hazard analysis and critical control points (HACCP) • Hazard analysis and risk-based preventive controls (HARPC) | |
Critical control point | |
Critical factors | |
FAT TOM | |
pH | |
Water activity (aw) | |
Bacterial pathogens | |
Clostridium botulinum | |
Escherichia coli | |
Listeria | |
Salmonella | |
Vibrio cholerae | |
Viral pathogens | |
Enterovirus | |
Hepatitis A | |
Norovirus | |
Rotavirus | |
Parasitic pathogens | |
Cryptosporidium | |
Entamoeba histolytica | |
Giardia | |
Trichinella | |
Food microbiology is the study of the microorganisms that inhabit, create, or contaminate food, including the study of microorganisms causing food spoilage. "Good" bacteria, however, such as probiotics, are becoming increasingly important in food science. In addition, microorganisms are essential for the production of foods such as cheese, yogurt, bread, beer, wine and, other fermented foods.
Food safety is a major focus of food microbiology. Pathogenic bacteria, viruses and toxins produced by microorganisms are all possible contaminants of food. However, microorganisms and their products can also be used to combat these pathogenic microbes. Probiotic bacteria, including those that produce bacteriocins, can kill and inhibit pathogens. Alternatively, purified bacteriocins such as nisin can be added directly to food products. Finally, bacteriophages, viruses that only infect bacteria, can be used to kill bacterial pathogens. Thorough preparation of food, including proper cooking, eliminates most bacteria and viruses. However, toxins produced by contaminants may not be liable to change to non-toxic forms by heating or cooking the contaminated food due to other safety conditions.