*** Welcome to piglix ***

Focal adhesions


In cell biology, focal adhesions (also cell–matrix adhesions or FAs) are large macromolecular assemblies through which mechanical force and regulatory signals are transmitted between the extracellular matrix (ECM) and an interacting cell. More precisely, focal adhesions are the sub-cellular structures that mediate the regulatory effects (i.e., signaling events) of a cell in response to ECM adhesion.

Focal adhesions serve as the mechanical linkages to the ECM, and as a biochemical signaling hub to concentrate and direct numerous signaling proteins at sites of integrin binding and clustering.

Focal adhesions are integrin-containing, multi-protein structures that form mechanical links between intracellular actin bundles and the extracellular substrate in many cell types. Focal adhesions are large, dynamic protein complexes through which the cytoskeleton of a cell connects to the ECM. They are limited to clearly defined ranges of the cell, at which the plasma membrane closes to within 15 nm of the ECM substrate. Focal adhesions are in a state of constant flux: proteins associate and disassociate with it continually as signals are transmitted to other parts of the cell, relating to anything from cell motility to cell cycle. Focal adhesions can contain over 100 different proteins, which suggests a considerable functional diversity. More than anchoring the cell, they function as signal carriers (sensors), which inform the cell about the condition of the ECM and thus affect their behavior. In cells, focal adhesions are quite stable under normal conditions, while in moving cells their stability is diminished: this is because in motile cells, focal adhesions are being constantly assembled and disassembled as the cell establishes new contacts at the leading edge, and breaks old contacts at the trailing edge of the cell. One example of their important role is in the immune system, in which white blood cells migrate along the connective endothelium following cellular signals to damaged biological tissue.


...
Wikipedia

...