Foam concrete, also known as foamed concrete, foamcrete, cellular lightweight concrete or reduced density concrete, is defined as a cement based slurry, with a minimum of 20% (per volume) foam entrained into the plastic mortar. As mostly no coarse aggregate is used for production of foam concrete the correct term would be called mortar instead of concrete. Sometimes it may be called as "foamed cement" or "foam cement" because of mixture of only Cement & Foam without any fine aggregate. The density of foam concrete usually varies from 400 kg/m³ to 1600 kg/ m³. The density is normally controlled by substituting fully or part of the fine aggregate with foam.
The history of foam concrete dates back to the early 1920s and the production of , which was used mainly as insulation. A detailed study concerning the composition, physical properties and production of foamed concrete was first carried out in the 1950s and 60s. Following this research, new admixtures were developed in the late 1970s and early 80s, which led to the commercial use of foamed concrete in construction projects. Initially, it was used in the Netherlands for filling voids and for ground stabilisation. Further research carried out in the Netherlands helped bring about the more widespread use of foam concrete as a building material.
Foamed concrete typically consists of a slurry of cement and fly ash or sand and water, although some suppliers recommend pure cement and water with the foaming agent for very lightweight mixes. This slurry is further mixed with a synthetic aerated foam in a concrete mixing plant. The foam is created using a foaming agent, mixed with water and air from a generator. The foaming agent used must be able to produce air bubbles with a high level of stability, resistant to the physical and chemical processes of mixing, placing and hardening.
Foamed concrete mixture may be poured or pumped into moulds, or directly into structural elements. The foam enables the slurry to flow freely due to the thixotropic behaviour of the foam bubbles, allowing it to be easily poured into the chosen form or mould. The viscous material requires up to 24 hours to solidify (or as little as two hours if steam cured with temperatures up to 70 °C to accelerate the process.), depending on variables including ambient temperature and humidity. Once solidified, the formed produce may be released from its mould.