The fluctuation–dissipation theorem (FDT) or fluctuation–dissipation relation (FDR) is a powerful tool in statistical physics for predicting the behavior of systems that obey detailed balance. Given that a system obeys detailed balance, the theorem is a general proof that thermal fluctuations in a physical variable predict the response quantified by the admittance or impedance of the same physical variable, and vice versa. The fluctuation–dissipation theorem applies both to classical and quantum mechanical systems.
The fluctuation–dissipation theorem relies on the assumption that the response of a system in thermodynamic equilibrium to a small applied force is the same as its response to a spontaneous fluctuation. Therefore, the theorem connects the linear response relaxation of a system from a prepared non-equilibrium state to its statistical fluctuation properties in equilibrium. Often the linear response takes the form of one or more exponential decays.
The fluctuation–dissipation theorem was originally formulated by Harry Nyquist in 1928, and later proven by Herbert Callen and Theodore A. Welton in 1951.
The fluctuation–dissipation theorem says that when there is a process that dissipates energy, turning it into heat (e.g., friction), there is a reverse process related to thermal fluctuations. This is best understood by considering some examples:
The fluctuation–dissipation theorem is a general result of statistical thermodynamics that quantifies the relation between the fluctuations in a system at thermal equilibrium and the response of the system to applied perturbations.
The model thus allows, for example, the use of molecular models to predict material properties in the context of linear response theory. The theorem assumes that applied perturbations, e.g., mechanical forces or electric fields, are weak enough that rates of relaxation remain unchanged.