In algebraic geometry, flips and flops are codimension-2 surgery operations arising in the minimal model program, given by blowing up along a relative canonical ring. In dimension 3 flips are used to construct minimal models, and any two birationally equivalent minimal models are connected by a sequence of flops. It is conjectured that the same is true in higher dimensions.
The minimal model program can be summarised very briefly as follows: given a variety , we construct a sequence of contractions , each of which contracts some curves on which the canonical divisor is negative. Eventually, should become nef (at least in the case of nonnegative Kodaira dimension), which is the desired result. The major technical problem is that, at some stage, the variety may become 'too singular', in the sense that the canonical divisor is no longer Cartier, so the intersection number with a curve is not even defined.