*** Welcome to piglix ***

Flame temperature


In the study of combustion, there are two types of adiabatic flame temperature depending on how the process is completed, constant volume and constant pressure, describing the temperature that the combustion products theoretically reach if no energy is lost to the outside environment.

The constant volume adiabatic flame temperature is the temperature that results from a complete combustion process that occurs without any work, heat transfer or changes in kinetic or potential energy. Its temperature is higher than the constant pressure process because none of the energy is utilized to change the volume of the system (i.e., generate work).

In daily life, the vast majority of flames one encounters are those of organic compounds including wood, wax, fat, common plastics, propane, and gasoline. The constant-pressure adiabatic flame temperature of such substances in air is in a relatively narrow range around 1950 °C. This is because, in terms of stoichiometry, the combustion of an organic compound with n carbons involves breaking roughly 2n C–H bonds, n C–C bonds, and 1.5n O2 bonds to form roughly n CO2 molecules and n H2O molecules.

Because most combustion processes that happen naturally occur in the open air, there is nothing that confines the gas to a particular volume like the cylinder in an engine. As a result, these substances will burn at a constant pressure allowing the gas to expand during the process.

Assuming initial atmospheric conditions (1 bar and 20 °C), the following table lists the adiabatic flame temperature for various gases under constant pressure conditions. The temperatures mentioned here are for a stoichiometric fuel-oxidizer mixture (i.e. equivalence ratio φ = 1).


...
Wikipedia

...