*** Welcome to piglix ***

Fisher consistency


In statistics, Fisher consistency, named after Ronald Fisher, is a desirable property of an estimator asserting that if the estimator were calculated using the entire population rather than a sample, the true value of the estimated parameter would be obtained.

Suppose we have a statistical sample X1, ..., Xn where each Xi follows a cumulative distribution Fθ which depends on an unknown parameter θ. If an estimator of θ based on the sample can be represented as a functional of the empirical distribution function n:

the estimator is said to be Fisher consistent if:

As long as the Xi are exchangeable, an estimator T defined in terms of the Xi can be converted into an estimator T′ that can be defined in terms of n by averaging T over all permutations of the data. The resulting estimator will have the same expected value as T and its variance will be no larger than that of T.

If the strong law of large numbers can be applied, the empirical distribution functions n converge pointwise to Fθ, allowing us to express Fisher consistency as a limit — the estimator is Fisher consistent if

Suppose our sample is obtained from a finite population Z1, ..., Zm. We can represent our sample of size n in terms of the proportion of the sample ni / n taking on each value in the population. Writing our estimator of θ as T(n1 / n, ..., nm / n), the population analogue of the estimator is T(p1, ..., pm), where pi = P(X = Zi). Thus we have Fisher consistency if T(p1, ..., pm) = θ.


...
Wikipedia

...