*** Welcome to piglix ***

Fins

External video
Charlie the catfish - CIA video
AquaPenguin - Festo, YouTube
AquaRay - Festo, YouTube
AquaJelly - Festo, YouTube
AiraCuda - Festo, YouTube
External video
Robotic fish to monitor pollution in harbours YouTube
Robotic Fish YouTube
Robot Fish YouTube
Robotic Shark YouTube
Evolution of the Surfboard FinYouTube

A fin is a thin component or appendage attached to a larger body or structure. Fins typically function as foils that produce lift or thrust, or provide the ability to steer or stabilize motion while traveling in water, air, or other fluid media. Fins are also used to increase surface areas for heat transfer purposes, or simply as ornamentation.

Fins first evolved on fish as a means of locomotion. Fish fins are used to generate thrust and control the subsequent motion. Fish, and other aquatic animals such as cetaceans, actively propel and steer themselves with pectoral and tail fins. As they swim, they use other fins, such as dorsal and anal fins, to achieve stability and refine their maneuvering.

Foil shaped fins generate thrust when moved, the lift of the fin sets water or air in motion and pushes the fin in the opposite direction. Aquatic animals get significant thrust by moving fins back and forth in water. Often the tail fin is used, but some aquatic animals generate thrust from pectoral fins. Fins can also generate thrust if they are rotated in air or water. Turbines and propellers (and sometimes fans and pumps) use a number of rotating fins, also called foils, wings, arms or blades. Propellers use the fins to translate torquing force to lateral thrust, thus propelling an aircraft or ship. Turbines work in reverse, using the lift of the blades to generate torque and power from moving gases or water.

Cavitation can be a problem with high power applications, resulting in damage to propellers or turbines, as well as noise and loss of power. Cavitation occurs when negative pressure causes bubbles (cavities) to form in a liquid, which then promptly and violently collapse. It can cause significant damage and wear. Cavitation damage can also occur to the tail fins of powerful swimming marine animals, such as dolphins and tuna. Cavitation is more likely to occur near the surface of the ocean, where the ambient water pressure is relatively low. Even if they have the power to swim faster, dolphins may have to restrict their speed because collapsing cavitation bubbles on their tail are too painful. Cavitation also slows tuna, but for a different reason. Unlike dolphins, these fish do not feel the bubbles, because they have bony fins without nerve endings. Nevertheless, they cannot swim faster because the cavitation bubbles create a vapor film around their fins that limits their speed. Lesions have been found on tuna that are consistent with cavitation damage.


...
Wikipedia

...