*** Welcome to piglix ***

Finite simple groups


In mathematics, the classification of finite simple groups states that every finite simple group is cyclic, or alternating, or in one of 16 families of groups of Lie type, or one of 26 sporadic groups.

The list below gives all finite simple groups, together with their order, the size of the Schur multiplier, the size of the outer automorphism group, usually some small representations, and lists of all duplicates.

The following table is a complete list of the 18 families of finite simple groups and the 26 sporadic simple groups, along with their orders. Any non-simple members of each family are listed, as well as any members duplicated within a family or between families. (In removing duplicates it is useful to note that no two finite simple groups have the same order, except that the group A8 = A3(2) and A2(4) both have order 20160, and that the group Bn(q) has the same order as Cn(q) for q odd, n > 2. The smallest of the latter pairs of groups are B3(3) and C3(3) which both have order 4585351680.)

There is an unfortunate conflict between the notations for the alternating groups An and the groups of Lie type An(q). Some authors use various different fonts for An to distinguish them. In particular, in this article we make the distinction by setting the alternating groups An in Roman font and the Lie-type groups An(q) in italic.

In what follows, n is a positive integer, and q is a positive power of a prime number p, with the restrictions noted. The notation (a,b) represents the greatest common divisor of the integers a and b.

Simplicity: Simple for p a prime number.

Order: p


...
Wikipedia

...