*** Welcome to piglix ***

Finite complement topology


In mathematics, a cofinite subset of a set X is a subset A whose complement in X is a finite set. In other words, A contains all but finitely many elements of X. If the complement is not finite, but it is countable, then one says the set is cocountable.

These arise naturally when generalizing structures on finite sets to infinite sets, particularly on infinite products, as in the product topology or direct sum.

The set of all subsets of X that are either finite or cofinite forms a Boolean algebra, i.e., it is closed under the operations of union, intersection, and complementation. This Boolean algebra is the finite-cofinite algebra on X. A Boolean algebra A has a unique non-principal ultrafilter (i.e. a maximal filter not generated by a single element of the algebra) if and only if there is an infinite set X such that A is isomorphic to the finite-cofinite algebra on X. In this case, the non-principal ultrafilter is the set of all cofinite sets.

The cofinite topology (sometimes called the finite complement topology) is a topology which can be defined on every set X. It has precisely the empty set and all cofinite subsets of X as open sets. As a consequence, in the cofinite topology, the only closed subsets are finite sets, or the whole of X. Symbolically, one writes the topology as

This topology occurs naturally in the context of the Zariski topology. Since polynomials over a field K are zero on finite sets, or the whole of K, the Zariski topology on K (considered as affine line) is the cofinite topology. The same is true for any irreducible algebraic curve; it is not true, for example, for XY = 0 in the plane.


...
Wikipedia

...