In theoretical physics and applied mathematics, a field equation is a partial differential equation which determines the dynamics of a physical field, specifically the time evolution and spatial distribution of the field. The solutions to the equation are mathematical functions which correspond directly to the field, as a functions of time and space. Since the field equation is a partial differential equation, there are families of solutions which represent a variety of physical possibilities. Usually, there is not just a single equation, but a set of coupled equations which must be solved simultaneously. Field equations are not ordinary differential equations since a field depends on space and time, which requires at least two variables.
Whereas the "wave equation", the "diffusion equation", and the "continuity equation" all have standard forms (and various special cases or generalizations), there is no single, special equation referred to as "the field equation".
The topic broadly splits into equations of classical field theory and quantum field theory. Classical field equations describe many physical properties like temperature of a substance, velocity of a fluid, stresses in an elastic material, electric and magnetic fields from a current, etc. They also describe the fundamental forces of nature, like electromagnetism and gravity.In quantum field theory, particles or systems of "particles" like electrons and photons are associated with fields, allowing for infinite degrees of freedom (unlike finite degrees of freedom in particle mechanics) and variable particle numbers which can be created or annihilated.
Usually, field equations are postulated (like the Einstein field equations and the Schrödinger equation, which underlies all quantum field equations) or obtained from the results of experiments (like Maxwell's equations). The extent of their validity is their extent to correctly predict and agree with experimental results.