In mathematics, a field is a set on which are defined addition, subtraction, multiplication, and division, which behave as they do when applied to rational and real numbers. A field is thus a fundamental algebraic structure, which is widely used in algebra, number theory and many other areas of mathematics.
The best known fields are the field of rational numbers and the field of real numbers. The field of complex numbers is also widely used, not only in mathematics, but also in many areas of science and engineering. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and p-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most rely on finite fields, i.e., fields with finitely many elements.
The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Evariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, this theory shows that angle trisection and squaring the circle can not be done with a compass and straightedge. Moreover, it shows that quintic equations are algebraically unsolvable.