Fibre cement is a composite building and construction material, used mainly in roofing and facade products because of its strength and durability.
The term "cement" originates from the Latin word "Caementum", which signifies chopped stone. Cement describes a substance, which will react chemically with water and develop into a material hard as stone.
In fibre cement there is a fibre reinforcement, which contributes to making the fibre-cement material even stronger. Together with a carefully planned production process, fibre cement makes it possible to develop strong and long lasting construction materials.
Today fibre cement is considered as a material physically suited for construction products such as cladding and roofing. It is primarily due to its function, performance and commercial value.
Fibre cement flat sheet classified, by accredited laboratories, as Category A according to BS EN 12467: 2004 Fibre-cement flat sheets – Product specification and test methods are sheets which are intended for applications where they may be subject to heat, high moisture and severe frost. While the best possible Reaction to Fire Classifications are A1 (construction applications) and A1Fl (flooring applications) respectively, both of which mean "non-combustible" according to EN 13501-1: 2007, as classified by a notified laboratory in Europe, some fibre cement boards only come with Fire Classification of A2 (limited combustibility) or even lower classifications, if they are tested at all.
Fibre-reinforced cement-products were invented in the late 19th century by the Austrian Ludwig Hatschek. He mixed 90% cement and 10% asbestos fibres with water and ran it through a cardboard machine, forming strong thin sheets. Originally, the reinforcing fibres were of asbestos and the material was commonly used as siding in house buildings due to its low cost, fire-resistance, water tightness, light weight, and other useful properties.
In the 1970s it became widely acknowledged that exposure to asbestos is harmful to health, being directly related to a number of life-threatening diseases including, asbestosis, pleural mesothelioma (lung) and peritoneal mesothelioma (abdomen). Consequently, asbestos use was progressively prohibited and safer fibre alternatives were developed, principally cellulose, to allow continued exploitation of the widely acknowledged advantages of fibre cement.