*** Welcome to piglix ***

Fermat's principle


In optics, Fermat's principle or the principle of least time, named after French mathematician Pierre de Fermat, is the principle that the path taken between two points by a ray of light is the path that can be traversed in the least time. This principle is sometimes taken as the definition of a ray of light. However, this version of the principle is not general; a more modern statement of the principle is that rays of light traverse the path of stationary optical length with respect to variations of the path. In other words, a ray of light prefers the path such that there are other paths, arbitrarily nearby on either side, along which the ray would take almost exactly the same time to traverse.

Fermat's principle can be used to describe the properties of light rays reflected off mirrors, refracted through different media, or undergoing total internal reflection. It follows mathematically from Huygens' principle (at the limit of small wavelength). Fermat's text Analyse des réfractions exploits the technique of adequality to derive Snell's law of refraction and the law of reflection.

Fermat's principle has the same form as Hamilton's principle and it is the basis of Hamiltonian optics.

The time T a point of the electromagnetic wave needs to cover a path between the points A and B is given by:

c is the speed of light in vacuum, ds an infinitesimal displacement along the ray, v = ds/dt the speed of light in a medium and n = c/v the refractive index of that medium, is the starting time (the wave front is in A), is the arrival time at B. The optical path length of a ray from a point A to a point B is defined by:


...
Wikipedia

...