*** Welcome to piglix ***

Feature learning


In machine learning, feature learning or representation learning is a set of techniques that learn a feature: a transformation of raw data input to a representation that can be effectively exploited in machine learning tasks. This obviates manual feature engineering, which is otherwise necessary, and allows a machine to both learn at a specific task (using the features) and learn the features themselves.

Feature learning is motivated by the fact that machine learning tasks such as classification often require input that is mathematically and computationally convenient to process. However, real-world data such as images, video, and sensor measurement is usually complex, redundant, and highly variable. Thus, it is necessary to discover useful features or representations from raw data. Traditional hand-crafted features often require expensive human labor and often rely on expert knowledge. Also, they normally do not generalize well. This motivates the design of efficient feature learning techniques, to automate and generalize this.

Feature learning can be divided into two categories: supervised and unsupervised feature learning, analogous to these categories in machine learning generally.

Supervised feature learning is learning features from labeled data. Several approaches are introduced in the following.

Dictionary learning is to learn a set (dictionary) of representative elements from the input data such that each data point can be represented as a weighted sum of the representative elements. The dictionary elements and the weights may be found by minimizing the average representation error (over the input data), together with L1 regularization on the weights to enable sparsity (i.e., the representation of each data point has only a few nonzero weights).

Supervised dictionary learning exploits both the structure underlying the input data and the labels for optimizing the dictionary elements. For example, a supervised dictionary learning technique was proposed by Mairal et al. in 2009. The authors apply dictionary learning on classification problems by jointly optimizing the dictionary elements, weights for representing data points, and parameters of the classifier based on the input data. In particular, a minimization problem is formulated, where the objective function consists of the classification error, the representation error, an L1 regularization on the representing weights for each data point (to enable sparse representation of data), and an L2 regularization on the parameters of the classifier.


...
Wikipedia

...