*** Welcome to piglix ***

Fast reactor


A fast neutron reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons. Such a reactor needs no neutron moderator, but must use fuel that is relatively rich in fissile material when compared to that required for a thermal reactor.

In order to sustain a fission chain reaction, the neutrons released in fission events have to react with other atoms in the fuel. The chance of this occurring depends on the energy of the neutron; most atoms will only undergo induced fission with high energy neutrons, although a smaller number prefer much lower energies.

Natural uranium consists mostly of three isotopes, U-238, U-235, and trace quantities of U-234, a decay product of U-238. U-238 accounts for roughly 99.3% of natural uranium and undergoes fission only by neutrons with energies of 5 MeV or greater, the so-called fast neutrons. About 0.7% of natural uranium is U-235, which undergoes fission by neutrons of any energy, but particularly by lower energy neutrons. When either of these isotopes undergoes fission they release neutrons around 1 to 2 MeV, too low to cause fission in U-238, and too high to do so easily in U-235.

The common solution to this problem is to slow the neutron from these fast speeds using a neutron moderator, any substance which interacts with the neutrons and slows their speed. The most common moderator is normal water, which slows the neutrons through elastic scattering until the neutrons reach thermal equilibrium with the water. The key to reactor design is to carefully lay out the fuel and water so the neutrons have time to slow enough to become highly reactive with the U-235, but not so far as to allow them easy pathways to escape the reactor core entirely.


...
Wikipedia

...