The fast marching method is a numerical method created by James Sethian for solving boundary value problems of the Eikonal equation:
Typically, such a problem describes the evolution of a closed surface as a function of time with speed in the normal direction at a point on the propagating surface. The speed function is specified, and the time at which the contour crosses a point is obtained by solving the equation. Alternatively, can be thought of as the minimum amount of time it would take to reach starting from the point . The fast marching method takes advantage of this optimal control interpretation of the problem in order to build a solution outwards starting from the "known information", i.e. the boundary values.