In mathematics, a Følner sequence for a group is a sequence of sets satisfying a particular condition. If a group has a Følner sequence with respect to its action on itself, the group is amenable. A more general notion of Følner nets can be defined analogously, and is suited for the study of uncountable groups. Følner sequences are named for Erling Følner.
Given a group that acts on a countable set , a Følner sequence for the action is a sequence of finite subsets of which exhaust and which "don't move too much" when acted on by any group element. Precisely,