In set theory, an extender is a system of ultrafilters which represents an elementary embedding witnessing large cardinal properties. A nonprincipal ultrafilter is the most basic case of an extender.
A (κ, λ)-extender can be defined as an elementary embedding of some model M of ZFC− (ZFC minus the power set axiom) having critical point κ ε M, and which maps κ to an ordinal at least equal to λ. It can also be defined as a collection of ultrafilters, one for each n-tuple drawn from λ.
Let κ and λ be cardinals with κ≤λ. Then, a set is called a (κ,λ)-extender if the following properties are satisfied:
By coherence, one means that if a and b are finite subsets of λ such that b is a superset of a, then if X is an element of the ultrafilter Eb and one chooses the right way to project X down to a set of sequences of length |a|, then X is an element of Ea. More formally, for , where , and , where m≤n and for j≤m the ij are pairwise distinct and at most n, we define the projection .