In mathematics, the explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by Riemann (1859) for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field.
In his 1859 paper "On the Number of Primes Less Than a Given Magnitude" Riemann sketched an explicit formula (it was not fully proven until 1895 by von Mangoldt, see below) for the normalized prime-counting function π0(x) which is related to the prime-counting function π(x) by
which takes the arithmetic mean of the limit from the left and the limit from the right at discontinuities. His formula was given in terms of the related function
in which a prime power pn counts as 1/n of a prime. The normalized prime-counting function can be recovered from this function by
where μ(n) is the Möbius function. Riemann's formula is then
involving a sum over the non-trivial zeros ρ of the Riemann zeta function. The sum is not absolutely convergent, but may be evaluated by taking the zeros in order of the absolute value of their imaginary part. The function li occurring in the first term is the (unoffset) logarithmic integral function given by the Cauchy principal value of the divergent integral
The terms li(xρ) involving the zeros of the zeta function need some care in their definition as li has branch points at 0 and 1, and are defined by analytic continuation in the complex variable ρ in the region x>1 and Re(ρ)>0. The other terms also correspond to zeros: the dominant term li(x) comes from the pole at s = 1, considered as a zero of multiplicity −1, and the remaining small terms come from the trivial zeros. This formula says that the zeros of the Riemann zeta function control the oscillations of primes around their "expected" positions. (For graphs of the sums of the first few terms of this series see Zagier 1977.)