*** Welcome to piglix ***

Explained sum of squares


In statistics, the explained sum of squares (ESS), alternatively known as the model sum of squares or sum of squares due to regression ("SSR" – not to be confused with the residual sum of squares RSS), is a quantity used in describing how well a model, often a regression model, represents the data being modelled. In particular, the explained sum of squares measures how much variation there is in the modelled values and this is compared to the total sum of squares, which measures how much variation there is in the observed data, and to the residual sum of squares, which measures the variation in the modelling errors.

The explained sum of squares (ESS) is the sum of the squares of the deviations of the predicted values from the mean value of a response variable, in a standard regression model — for example, yi = a + b1x1i + b2x2i + ... + εi, where yi is the i th observation of the response variable, xji is the i th observation of the j thexplanatory variable, a and bi are coefficients, i indexes the observations from 1 to n, and εi is the i th value of the error term. In general, the greater the ESS, the better the estimated model performs.

If and are the estimated coefficients, then


...
Wikipedia

...