Evolutionary taxonomy, evolutionary systematics or Darwinian classification is a branch of biological classification that seeks to classify organisms using a combination of phylogenetic relationship (shared descent), progenitor-descendant relationship (serial descent), and degree of evolutionary change. This type of taxonomy may consider whole taxa rather than single species, so that groups of species can be inferred as giving rise to new groups. The concept found its most well-known form in the modern evolutionary synthesis of the early 1940s.
Evolutionary taxonomy differs from strict pre-Darwinian Linnaean taxonomy (producing orderly lists only), in that it builds evolutionary trees. While in phylogenetic nomenclature each taxon must consist of a single ancestral node and all its descendants, evolutionary taxonomy allows for groups to be excluded from their parent taxa (e.g. dinosaurs are not considered to include birds, but to have given rise to them), thus permitting paraphyletic taxa.
Evolutionary taxonomy arose as a result of the influence of the theory of evolution on Linnaean taxonomy. The idea of translating Linnaean taxonomy into a sort of dendrogram of the Animal and Plant Kingdoms was formulated toward the end of the 18th century, well before Charles Darwin's book On the Origin of Species was published. The first to suggest that organisms had common descent was Pierre-Louis Moreau de Maupertuis in his 1751 Essai de Cosmologie,Transmutation of species entered wider scientific circles with Erasmus Darwin's 1796 Zoönomia and Jean-Baptiste Lamarck's 1809 Philosophie Zoologique. The idea was popularised in the English-speaking world by the speculative but widely read Vestiges of the Natural History of Creation, published anonymously by Robert Chambers in 1844.