*** Welcome to piglix ***

Evolutionary model


A number of different Markov models of DNA sequence evolution have been proposed. These substitution models differ in terms of the parameters used to describe the rates at which one nucleotide replaces another during evolution. These models are frequently used in molecular phylogenetic analyses. In particular, they are used during the calculation of likelihood of a tree (in Bayesian and maximum likelihood approaches to tree estimation) and they are used to estimate the evolutionary distance between sequences from the observed differences between the sequences.

These models are phenomenological descriptions of the evolution of DNA as a string of four discrete states. These Markov models do not explicitly depict the mechanism of mutation nor the action of natural selection. Rather they describe the relative rates of different changes. For example, mutational biases and purifying selection favoring conservative changes are probably both responsible for the relatively high rate of transitions compared to transversions in evolving sequences. However, the Kimura (K80) model described below merely attempts to capture the effect of both forces in a parameter that reflects the relative rate of transitions to transversions.

Evolutionary analyses of sequences are conducted on a wide variety of time scales. Thus, it is convenient to express these models in terms of the instantaneous rates of change between different states (the Q matrices below). If we are given a starting (ancestral) state at one position, the model's Q matrix and a branch length expressing the expected number of changes to have occurred since the ancestor, then we can derive the probability of the descendant sequence having each of the four states. The mathematical details of this transformation from rate-matrix to probability matrix are described in the mathematics of substitution models section of the substitution model page. By expressing models in terms of the instantaneous rates of change we can avoid estimating a large numbers of parameters for each branch on a phylogenetic tree (or each comparison if the analysis involves many pairwise sequence comparisons).


...
Wikipedia

...