*** Welcome to piglix ***

Euler-Maclaurin formula


In mathematics, the Euler–Maclaurin formula provides a powerful connection between integrals (see calculus) and sums. It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus. For example, many asymptotic expansions are derived from the formula, and Faulhaber's formula for the sum of powers is an immediate consequence.

The formula was discovered independently by Leonhard Euler and Colin Maclaurin around 1735 (and later generalized as Darboux's formula). Euler needed it to compute slowly converging infinite series while Maclaurin used it to calculate integrals.

If and are natural numbers and is a complex or real valued continuous function for real numbers in the interval then the integral


...
Wikipedia

...