Ethoxylation is a chemical reaction in which ethylene oxide adds to a substrate. It is the most widely practiced alkoxylation, which involves the addition of epoxides to substrates.
In the usual application, alcohols and phenols are converted into R(OC2H4)nOH where n ranges from 1 to as high as 10. Such compounds are called alcohol ethoxylates. Alcohol ethoxlates are often converted to related species called ethoxysulfates. Alcohol ethoxylates and ethoxysulfates are surfactants, used widely in cosmetic and other commercial products. The process is of great industrial significance with more than 2,000,000 metric tons of various ethoxylates produced worldwide in 1994.
The process was developed at the Ludwigshafen laboratories of I.G. Farben by Conrad Schöller and Max Wittwer during the 1930s.
Industrial ethoxylation is primarily performed upon fatty alcohols in order to generate fatty alcohol ethoxylates (FAE's), which are a common form of nonionic surfactant. Such alcohols may be obtained by the hydrogenation of fatty acids from seed oils, or via hydroformylation in the Shell higher olefin process. The reaction proceeds by blowing ethylene oxide through the alcohol at 180 °C and under 1-2 bar of pressure, with potassium hydroxide (KOH) serving as a catalyst. The process is highly exothermic (ΔH -92000 J/mol of ethylene oxide reacted) and requires careful control to avoid a potentially disastrous thermal runaway.