An escapement is a device in mechanical watches and clocks that transfers energy to the timekeeping element (the "impulse action") and allows the number of its oscillations to be counted (the "locking action"). The impulse action transfers energy to the clock's timekeeping element (usually a pendulum or balance wheel) to replace the energy lost to friction during its cycle and keep the timekeeper oscillating. The escapement is driven by force from a coiled spring or a suspended weight, transmitted through the timepiece's gear train. Each swing of the pendulum or balance wheel releases a tooth of the escapement's escape wheel gear, allowing the clock's gear train to advance or "escape" by a fixed amount. This regular periodic advancement moves the clock's hands forward at a steady rate. At the same time the tooth gives the timekeeping element a push, before another tooth catches on the escapement's pallet, returning the escapement to its "locked" state. The sudden stopping of the escapement's tooth is what generates the characteristic "ticking" sound heard in operating mechanical clocks and watches.
Escapements are used elsewhere as well. Manual typewriters used escapements to step the carriage as each letter (or space) was typed.
The importance of the escapement in the history of technology is that it was the key invention that made the all-mechanical clock possible. The invention of the first all-mechanical escapement, the verge escapement, in 13th-century Europe initiated a change in timekeeping methods from continuous processes, such as the flow of water in water clocks, to repetitive oscillatory processes, such as the swing of pendulums, which could yield more accuracy. Oscillating timekeepers are used in every modern clock.
The earliest liquid-driven escapement was described by the Greek engineer Philo of Byzantium (3rd century BC) in his technical treatise Pneumatics (chapter 31) as part of a washstand. A counterweighted spoon, supplied by a water tank, tips over in a basin when full, releasing a spherical piece of pumice in the process. Once the spoon has emptied, it is pulled up again by the counterweight, closing the door on the pumice by the tightening string. Remarkably, Philo's comment that "its construction is similar to that of clocks" indicates that such escapement mechanisms were already integrated in ancient water clocks.