Names | |
---|---|
IUPAC name
ergosta-5,7,22-trien-3β-ol
|
|
Identifiers | |
57-87-4 | |
3D model (Jmol) | Interactive image |
ChEBI | CHEBI:16933 |
ChEMBL | ChEMBL1232562 |
ChemSpider | 392539 |
ECHA InfoCard | 100.000.320 |
EC Number | 200-352-7 |
MeSH | Ergosterol |
PubChem | 444679 |
UNII | Z30RAY509F |
|
|
|
|
Properties | |
C28H44O | |
Molar mass | 396.65 g/mol |
Melting point | 160 °C (320 °F; 433 K) |
Boiling point | 250 °C (482 °F; 523 K) |
-279.6·10−6 cm3/mol | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Ergosterol (ergosta-5,7,22-trien-3β-ol) is a sterol found in cell membranes of fungi and protozoa, serving many of the same functions that cholesterol serves in animal cells. Because many fungi and protozoa cannot survive without ergosterol, the enzymes that create it have become important targets for drug discovery. Ergosterol is a provitamin form of vitamin D2; exposure to ultraviolet (UV) light causes a chemical reaction that produces vitamin D2.
Ergosterol (ergosta-5,7,22-trien-3β-ol) is a sterol found in fungi, and named for ergot, the common name of members of the fungal genus Claviceps from which ergosterol was first isolated. Ergosterol is a component of yeast and other fungal cell membranes, serving many of the same functions that cholesterol serves in animal cells. Its specificity in higher fungi is thought to be related to the climatic instabilities (highly varying humidity and moisture conditions) encountered by these organisms in their typical ecological niches (plant and animal surfaces, soil). Thus, despite the added energy requirements of ergosterol synthesis (if compared to cholesterol), ergosterol is thought to have evolved as a nearly ubiquitous, evolutionarily advantageous fungal alternative to cholesterol.
Because ergosterol is present in cell membranes of fungi, yet absent in those of animals, it is a useful target for antifungal drugs. Ergosterol is also present in the cell membranes of some protists, such as trypanosomes. This is the basis for the use of some antifungals against West African sleeping sickness.