*** Welcome to piglix ***

Equivalence closure


A set has closure under an operation if performance of that operation on members of the set always produces a member of the same set; in this case we also say that the set is closed under the operation. For example, the positive integers are closed under addition, but not under subtraction: is not a positive integer even though both 1 and 2 are positive integers. Another example is the set containing only zero, which is closed under addition, subtraction and multiplication (because , , and ).


...
Wikipedia

...