*** Welcome to piglix ***

Equatorial telescope


An equatorial mount is a mount for instruments that compensate the rotation of earth by having one rotational axis parallel to the Earth's axis of rotation. This type of mount is used for astronomical telescopes and cameras. The advantage of an equatorial mount lies in its ability to allow the instrument attached to it to stay fixed on any object in the sky that has a diurnal motion by driving one axis at a constant speed. Such an arrangement is called a sidereal drive.

In astronomical telescope mounts, the equatorial axis (the right ascension) is paired with a second perpendicular axis of motion (known as the declination). The equatorial axis of the mount is often equipped with a motorized "clock drive", that rotates that axis one revolution every 23 hours and 56 minutes in exact sync with the apparent diurnal motion of the sky. They may also be equipped with setting circles to allow for the location of objects by their celestial coordinates. Equatorial mounts differ from mechanically simpler altazimuth mounts, which require variable speed motion around both axes to track a fixed object in the sky. Also, for astrophotography, the image does not rotate in the focal plane, as occurs with altazimuth mounts when they are guided to track the target's motion, unless a rotating erector prism or other field-derotator is installed.

Equatorial telescope mounts come in many designs. In the last twenty years motorized tracking has increasingly been supplemented with computerized object location. There are two main types. Digital setting circles take a small computer with an object database that is attached to encoders. The computer monitors the telescope's position in the sky. The operator must push the telescope. Go-to systems use (in most cases) servo motors and the operator need not touch the instrument at all to change its position in the sky. The computers in these systems are typically either hand-held in a control "paddle" or supplied through an adjacent laptop computer which is also used to capture images from an electronic camera. The electronics of modern telescope systems often include a port for autoguiding. A special instrument tracks a star and makes adjustment in the telescope's position while photographing the sky. To do so the autoguider must be able to issue commands through the telescope's control system. These commands can compensate for very slight errors in the tracking performance, such as periodic error caused by the worm drive that makes the telescope move.


...
Wikipedia

...