Record linkage (RL) is the task of finding records in a data set that refer to the same entity across different data sources (e.g., data files, books, websites, and databases). Record linkage is necessary when joining data sets based on entities that may or may not share a common identifier (e.g., database key, URI, National identification number), which may be due to differences in record shape, storage location, or curator style or preference. A data set that has undergone RL-oriented reconciliation may be referred to as being cross-linked. Record linkage is called data linkage in many jurisdictions, but is the same process.
The initial idea of record linkage goes back to Halbert L. Dunn in his 1946 article titled "Record Linkage" published in the American Journal of Public Health. Howard Borden Newcombe laid the probabilistic foundations of modern record linkage theory in a 1959 article in Science, which were then formalized in 1969 by Ivan Fellegi and Alan Sunter who proved that the probabilistic decision rule they described was optimal when the comparison attributes were conditionally independent. Their pioneering work "A Theory For Record Linkage" remains the mathematical foundation for many record linkage applications even today.
Since the late 1990s, various machine learning techniques have been developed that can, under favorable conditions, be used to estimate the conditional probabilities required by the Fellegi-Sunter (FS) theory. Several researchers have reported that the conditional independence assumption of the FS algorithm is often violated in practice; however, published efforts to explicitly model the conditional dependencies among the comparison attributes have not resulted in an improvement in record linkage quality. On the other hand, machine learning or neural network algorithms that do not rely on these assumptions often provide far higher accuracy, when sufficient labeled training data is available.
Record linkage can be done entirely without the aid of a computer, but the primary reasons computers are often used for record linkage are to reduce or eliminate manual review and to make results more easily reproducible. Computer matching has the advantages of allowing central supervision of processing, better quality control, speed, consistency, and better reproducibility of results.