*** Welcome to piglix ***

Entity relationship model


An entity–relationship model (ER model) describes inter-related things of interest in a specific domain of knowledge. An ER model is composed of entity types (which classify the things of interest) and specifies relationships that can exist between instances of those entity types.

In software engineering an ER model is commonly formed to represent things that a business needs to remember in order to perform business processes. Consequently, the ER model becomes an abstract data model that defines a data or information structure that can be implemented in a database, typically a relational database.

Entity–relationship modeling was developed for database design by Peter Chen and published in a 1976 paper. However, variants of the idea existed previously, some ER modelers show super and subtype entities connected by generalization-specialization relationships, and an ER model can be used also in the specification of domain-specific ontology.

An entity–relationship model is usually the result of systematic analysis to define and describe what is important to processes in an area of a business. It does not define the business processes; it only presents a business data schema in graphical form. It is usually drawn in a graphical form as boxes (entities) that are connected by lines (relationships) which express the associations and dependencies between entities. An ER model can also be expressed in a verbal form, for example: one building may be divided into zero or more apartments, but one apartment can only be located in one building.

Entities may be characterized not only by relationships, but also by additional properties (attributes), which include identifiers called "primary keys". Diagrams created to represent attributes as well as entities and relationships may be called entity-attribute-relationship diagrams, rather than entity-relationship models.

An ER model is typically implemented as a database. In a simple relational database implementation, each row of a table represents one instance of an entity type, and each field in a table represents an attribute type. In a relational database a relationship between entities is implemented by storing the primary key of one entity as a pointer or "foreign key" in the table of another entity

There is a tradition for ER/data models to be built at two or three levels of abstraction. Note that the conceptual-logical-physical hierarchy below is used in other kinds of specification, and is different from the three schema approach to software engineering.


...
Wikipedia

...