*** Welcome to piglix ***

Endogenous retrovirus


Endogenous retroviruses (ERVs) are endogenous viral elements in the genome that closely resemble and can be derived from retroviruses. They are abundant in the genomes of jawed vertebrates, and they comprise up to 5–8% of the human genome (lower estimates of ~1%). ERVs are a subclass of a type of gene called a transposon, which can be packaged and moved within the genome to serve a vital role in gene expression and in regulation. They are distinguished as retrotransposons, which are Class I elements. Researchers have suggested that retroviruses evolved from a type of transposable gene called a retrotransposon, which includes ERVs; these genes can mutate and instead of moving to another location in the genome they can become exogenous or pathogenic. This means that not all ERVs may have originated as an insertion by a retrovirus but that some may have been the source for the genetic information in the retroviruses they resemble. When integration of viral DNA occurs in the germ-line, it can give rise to an ERV, which can later become fixed in the gene pool of the host population.

The replication cycle of a retrovirus entails the insertion ("integration") of a DNA copy of the viral genome into the nuclear genome of the host cell. Most retroviruses infect somatic cells, but occasional infection of germline cells (cells that produce eggs and sperm) can also occur. Rarely, retroviral integration may occur in a germline cell that goes on to develop into a viable organism. This organism will carry the inserted retroviral genome as an integral part of its own genome—an "endogenous" retrovirus (ERV) that may be inherited by its offspring as a novel allele. Many ERVs have persisted in the genome of their hosts for millions of years. However, most of these have acquired inactivating mutations during host DNA replication and are no longer capable of producing virus. ERVs can also be partially excised from the genome by a process known as recombinational deletion, in which recombination between the identical sequences that flank newly integrated retroviruses results in deletion of the internal, protein-coding regions of the viral genome.


...
Wikipedia

...